Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP
نویسندگان
چکیده
Reducing levels of the aggregation-prone Aβ peptide that accumulates in the brain with Alzheimer's disease (AD) has been a major target of experimental therapies. An alternative approach may be to stabilize the physiological conformation of Aβ. To date, the physiological state of Aβ in brain remains unclear, since the available methods used to process brain tissue for determination of Aβ aggregate conformation can in themselves alter the structure and/or composition of the aggregates. Here, using synchrotron-based Fourier transform infrared micro-spectroscopy, non-denaturing gel electrophoresis and conformational specific antibodies we show that the physiological conformations of Aβ and amyloid precursor protein (APP) in brain of transgenic mouse models of AD are altered before formation of amyloid plaques. Furthermore, focal Aβ aggregates in brain that precede amyloid plaque formation localize to synaptic terminals. These changes in the states of Aβ and APP that occur prior to plaque formation may provide novel targets for AD therapy.
منابع مشابه
Immunization targeting a minor plaque constituent clears β-amyloid and rescues behavioral deficits in an Alzheimer's disease mouse model.
Although anti-human β-amyloid (Aβ) immunotherapy clears brain β-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Aβ is a minor Aβ plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is ∼3%-8% of the total accumulated Aβ in various human APP transgenic mic...
متن کاملHuman tau increases amyloid β plaque size but not amyloid β‐mediated synapse loss in a novel mouse model of Alzheimer's disease
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau...
متن کاملIL-10 Alters Immunoproteostasis in APP Mice, Increasing Plaque Burden and Worsening Cognitive Behavior
Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in ...
متن کاملNeuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer's disease.
Chronic brain inflammation is associated with Alzheimer's disease (AD) and is classically attributed to amyloid plaque deposition. However, whether the amyloid pathology can trigger early inflammatory processes before plaque deposition remains a matter of debate. To address the possibility that a pre-plaque inflammatory process occurs, we investigated the status of neuronal, astrocytic, and mic...
متن کاملIcariin Decreases the Expression of APP and BACE-1 and Reduces the β-amyloid Burden in an APP Transgenic Mouse Model of Alzheimer's Disease
OBJECTIVE The purpose of this study was to investigate the effects and pharmacological mechanisms of icariin, which is the main component in the traditional Chinese herb Epimedium, on β-amyloid (Aβ) production in an amyloid precursor protein (APP) transgenic (Tg) mouse model of Alzheimer's disease (AD). METHODS APPV717I Tg mice were randomly divided into a model group and icariin-treated (30 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017